A Context-Aware System that Changes Sensor Combinations Considering Energy Consumption

نویسندگان

  • Kazuya Murao
  • Tsutomu Terada
  • Yoshinari Takegawa
  • Shojiro Nishio
چکیده

In wearable computing environments, a wearable computer runs various applications using various sensors (wearable sensors). In the area of context awareness, though various systems using accelerometers have been proposed to recognize very minute motions and states, energy consumption was not taken into consideration. We propose a context-aware system that reduces energy consumption. In life, the granularity of required contexts differs according to the situation. Therefore, the proposed system changes the granularity of cognitive contexts of a user’s situation and supplies power on the basis of the optimal sensor combination. Higher accuracy is achieved with fewer sensors. In addition, in proportion to the remainder of power resources, the proposed system reduces the number of sensors within the tolerance of accuracy. Moreover, the accuracy is improved by considering context transition. Even if the number of sensors changes, no extra classifiers or training data are required because the data for shutting off sensors is complemented by our proposed algorithm. By using our system, power consumption can be reduced without large losses in accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

EIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks

Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...

متن کامل

ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS

 Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...

متن کامل

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008